search for


Complete genome sequence of Archangium gephyra KYC5002, a myxobacterium producing argyrins and tubulysins
Korean J. Microbiol. 2023;59(4):362-365
Published online December 31, 2023
© 2023 The Microbiological Society of Korea.

Sunjin Lee, Hyesook Hyun, Juo Choi, Seohui Park, Chaehyeon Park, Yujin Ka, and Kyungyun Cho*

Department of Biotechnology, Hoseo University, Asan 31499, Republic of Korea
Correspondence to: *E-mail:; Tel.: +82-41-540-5627; Fax: +82-41-540-9538
Received November 21, 2023; Revised December 12, 2023; Accepted December 12, 2023.
The whole genome sequence of the argyrin- and tubulysin-producing myxobacterium Archangium gephyra KYC5002 was analyzed. The genome of A. gephyra KYC5002 was assembled into a 13,249,988 bp circular genome with a G + C content of 68.8%, containing 10,298 protein-coding genes, 12 rRNA genes, and 95 tRNA genes. In the A. gephyra KYC5002 genome, 53 secondary metabolite biosynthetic gene clusters (BGCs) were detected in 46 regions; the total length of these genes was 6.81% of the total genome. The genome was predicted to contain BGCs for argyrins, carotenoids, DKxanthenes, gephyronic acid, geosmins, microviridins, myxochellins, and tubulysins.
Keywords : Archangium gephyra, argyrin, genome sequence, myxobacteria, tubulysin

Myxobacteria are a group of gram-negative bacteria classified into the phylum Myxococcota and order Myxococcales. Archangium gephyra is a myxobacterium belonging to the family Cystobacteraceae and order Myxococcales (Reichenbach, 2005). Myxobacteria produce diverse bioactive secondary metabolites (Weissman and Müller, 2010; Herrmann et al., 2017; Hyun and Cho, 2018). Secondary metabolites isolated from A. gephyra strains include gephyronic acid (Sasse et al., 1995), melithiazols (Sasse et al., 1999), tubulysins (Sasse et al., 2000), argyrins (Sasse et al., 2002), archazolids (Sasse et al., 2003), and aurafurons (Kunze et al., 2005).

Archangium gephyra KYC5002 is a natural dispersed variant of A. gephyra KYC2615, isolated from Gyeongju, Gyeongsangbuk-do, Republic of Korea (Hyun et al., 2021; Yu et al., 2023). Most myxobacteria isolated from nature grow in liquid media producing aggregated cells. In contrast, A. gephyra KYC5002 strain grows dispersed in liquid media, allowing quantitation. Archangium gephyra KYC5002 is also known as MEHO_002 strain (Choi et al., 2021). Archangium gephyra KYC5002 produces argyrins and tubulysins (Yu et al., 2023). Argyrins are octapeptides with immunosuppressive and antitumorigenic activities (Sasse et al., 2002; Nickeleit et al., 2008). Tubulysins are cytotoxic to eukaryotes because they induce the depolymerization of β-tubulin, causing microtubules to disassemble (Sasse et al., 2000; Khalil et al., 2006). We sequenced the genome of A. gephyra KYC5002 because it produces argyrins and tubulysins, unlike DSM 2261T, which is the A. gephyra type strain.

Archangium gephyra KYC5002 was cultured in CYS medium (Shin et al., 2013), and the genomic DNA was extracted using the cetyltrimethylammonium bromide (CTAB) method (Wilson, 2001). The whole A. gephyra KYC5002 genome was sequenced using the PacBio Sequel IIe system and Illumina HiSeq Xten sequencing platform at Macrogen, Inc. In total, 29,174 HiFi reads (221,452,323 bp) were sequenced using the PacBio Sequel IIe system, and 13,758,734 short reads (2,077,568,834 bp) were sequenced using the Illumina platform. De novo assembly was conducted using the Flye assembler (v2.4.2) (Kolmogorov et al., 2019) with PacBio HiFi reads only, followed by error correction of the contig bases with Illumina reads using Pilon (v1.21) (Walker et al., 2014). The resultant A. gephyra KYC5002 whole genome is a circular chromosome of 13,249,988 bp with a G + C content of 68.8%. When calculated using the OrthoANIu algorithm (Yoon et al., 2017), the genome of strain KYC5002 had an average nucleotide identity (ANI) of 92.18% with the genome of strain DSM 2261T (GenBank accession number: CP011509.1), the type strain of A. gephyra, and the 16S rRNA sequence was 99.11% similar. Annotation using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revision 6.6 (Tatusova et al., 2016) revealed that the genome comprises 10,298 protein-coding genes, 12 rRNA genes, 95 tRNA genes, 4 ncRNA genes, and 38 pseudogenes (Table 1).

General genomic features of Archangium gephyra KYC5002 compared to type strain A. gephyra DSM 2261T
Genomic feature Value
DSM 2261T KYC5002
Genome size (bp) 12,489,432 13,249,988
Number of contig 1 1
Genome coverage (%) 100 100
G + C content (%) 69.4 68.8
Protein coding genes 9,798 10,298
rRNA genes (5S, 16S, 23S) 9 (3, 3, 3) 12 (4, 4, 4)
tRNA genes 90 95
ncRNA genes 4 4
Pseudogenes 99 38
CRISPR arrays - 2
GenBank accession number CP011509 CP137851

Myxobacteria have many secondary metabolite biosynthetic gene clusters (BGCs) in their genomes (Hyun and Cho, 2018). Therefore, we analyzed the secondary metabolite biosynthetic genes present in the A. gephyra KYC5002 genome using the antiSMASH program (Blin et al., 2023). Fifty-two BGSs were detected in 46 regions, and the combined sequence length of these BGCs was 901,678 bp or 6.81% of the genome. The genome was predicted to contain BGCs for argyrins, carotenoids, DKxanthenes, gephyronic acid, geosmins, microviridins, myxochellins, and tubulysins (Table 2). Genome-wide comparative analysis using the antiSMASH program showed that, of these BGCs, those that biosynthesize argyrins, DKxanthenes, gephyronic acid, and tubulysins were present only in the genome of A. gephyra KYC5002 and absent in the genome of the type strain A. gephyra DSM 2261T (Table 2). The whole genome sequence of A. gephyra KYC5002 is expected to be useful for studying the production of secondary bioactive compounds.

Secondary metabolite biosynthetic gene clusters whose products can be predicted in the A. gephyra DSM 2261T and KYC5002 genomes
Secondary metabolites Biosynthetic gene loci*
DSM 2261T KYC5002
Argyrin - 26410-26430
DKxanthene - 21410-21485
Gephyronic acid - 30395-30450
Tubulysin - 43510-43545
Alkylpyrone 09316-09320 04825-04845
Carotenoid 01865-01876 43750-43800
Geosmin 1 02305-02307 41780-41790
Geosmin 2 08732 12540
2-Hydroxysorangiadenosine 03302-03326 36340-36410
1-Nonadecene/(14Z)-1,14-nonadecadiene 01680 43600
Microviridin 02991-02992 38055-38060
Myxochellin 04409-04418 30555-30580
VEPE/AEPE/TG-1 03053-03058 37750-37790

*The locus tag prefixes “AA314” for the DSM 2261T genome and “KYC5002” for the KYC5002 genome are omitted.

VEPE, 1-O-(13-methyl-1-Z-tetradecenyl)-2-O-(13-methyltetradecanoyl)-glycero-3-phosphatidylethanolamine.

AEPE, 1-O-(13-methyltetradecyl)-2-O-(13-methyltetradecanoyl)glycero-3-phosphatidylethanolamine.

TG-1, 1,2-di-(13-methyltetradecanoyl)-3-(13-methyltetradecyl)glycerol.

Nucleotide sequence accession number

The complete genome sequence of Archangium gephyra KYC5002 has been deposited in GenBank under the accession number CP137851. The strain was deposited in the Korean Collection for Type Cultures (KCTC) under the accession number KCTC14104BP.

적 요

Argyrin과 tubulysin을 생산하는 점액세균 Archangium gephyra KYC5002의 전장 유전체 서열을 분석하였다. KYC 5002 균주의 유전체는 13,249,988 bp 크기로 68.8%의 G + C 함량을 갖는 원형의 유전체로 조립되었다. 단백질을 암호화하는 유전자는 10,298개이었고, rRNA 유전자는 12개, tRNA 유전자는 95개이었다. KYC5002 균주의 유전체에는 46개 지역에서 53개 이차대사산물 생합성 유전자군이 탐색되었는데, 이들 유전자들의 총 길이는 전체 유전체의 6.81%에 해당하였다. KYC5002 균주의 유전체에는 argyrins, carotenoids, DKxanthenes, gephyronic acid, geosmins, microviridins, myxochellins, tubulysins 등을 생산하는 이차대사 생합성 유전자군들이 존재하는 것으로 분석되었다.


This research was supported by MECOX CureMed Co. and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2021R1I1A3044432).

Conflict of Interest

The authors have no conflict of interest to report.

  1. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, and Helfrich EJN, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures, and visualisation. Nucleic Acids Res. 51, W46-W50.
    Pubmed KoreaMed CrossRef
  2. Choi J, Park T, Kang D, Lee J, Kim Y, Lee P, Chung GJY, and Cho K. 2021. Discovery of argyrin-producing Archangium gephyra MEHO_001 and identification of its argyrin biosynthetic genes. Microbiol. Biotechnol. Lett. 49, 493-500.
  3. Herrmann J, Fayad AA, and Müller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34, 135-160.
    Pubmed CrossRef
  4. Hyun H and Cho K. 2018. Secondary metabolites of myxobacteria. Korean J. Microbiol. 54, 175-187.
  5. Hyun H, Choi J, Kang D, Kim Y, Lee P, Chung G, and Cho K. 2021. Screening of myxobacteria carrying tubulysin biosynthetic genes. Microbiol. Biotechnol. Lett. 49, 32-38.
  6. Khalil MW, Sasse F, Lünsdorf H, Elnakady YA, and Reichenbach H. 2006. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem 7, 678-683.
    Pubmed CrossRef
  7. Kolmogorov M, Yuan J, Lin Y, and Pevzner P. 2019. Assembly of long error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540-546.
    Pubmed CrossRef
  8. Kunze B, Reichenbach H, Müller R, and Hӧfle G. 2005. Aurafuron A and B, new bioactive polyketides from Stigmatella aurantiaca and Archangium gephyra (Myxobacteria). J. Antibiot. 58, 244-251.
    Pubmed CrossRef
  9. Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sörensen I, Steinmetz H, Kubicka S, Carlomagno T, and Menche D, et al. 2008. Argyrin a reveals a critical role for the tumor suppressor protein p27kip1 in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14, 23-35.
    Pubmed CrossRef
  10. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM (eds.). Bergey's Manual of Systematic Bacteriology, 2nd edn, Springer, New York, USA.
  11. Sasse F, Böhlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, Höfle G, and Reichenbach H. 1999. Melithiazols, new β-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. J. Antibiot. 52, 721-729.
    Pubmed CrossRef
  12. Sasse F, Steinmetz H, Heil J, Hӧfle G, and Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53, 879-885.
    Pubmed CrossRef
  13. Sasse F, Steinmetz H, Hӧfle G, and Reichenbach H. 1995. Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). J. Antibiot. 48, 21-25.
    Pubmed CrossRef
  14. Sasse F, Steinmetz H, Hӧfle G, and Reichenbach H. 2003. Archazolids, new cytotoxic macrolactones from Archangium gephyra (Myxobacteria). J. Antibiot. 56, 520-525.
    Pubmed CrossRef
  15. Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, Heusser C, Brinkmann V, von Matt P, and Höfle G, et al. 2002. Argyrins, immunosuppressive cyclic peptides from myxobacteria. J. Antibiot. 55, 543-551.
    Pubmed CrossRef
  16. Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Microbiol. Biotechnol. Lett. 41, 44-51.
  17. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, and Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614-6624.
    Pubmed KoreaMed CrossRef
  18. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, and Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963.
    Pubmed KoreaMed CrossRef
  19. Weissman KJ and Müller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27, 1276-1295.
    Pubmed CrossRef
  20. Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 56, 2.4.1-2.4.5.
  21. Yoon SH, Ha SM, Lim JM, Kwon SJ, and Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110, 1281-1286.
    Pubmed CrossRef
  22. Yu U, Kim J, Park S, and Cho K. 2023. Tubulysins are essential for the preying of ciliates by myxobacteria. J. Microbiol. 61, 627-632.
    Pubmed CrossRef

December 2023, 59 (4)
Full Text(PDF) Free

Social Network Service

Author ORCID Information

Funding Information