search for




 

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions
Korean J. Microbiol 2018;54(4):428-435
Published online December 31, 2018
© 2018 The Microbiological Society of Korea.

Young Ho Nam1, Ahyoung Choi1, Buyng Su Hwang2, and Eu Jin Chung1,*

1Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea,
2Bioresources Industrialization Research Division, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
Correspondence to: E-mail: eujenee@nnibr.re.kr; Tel.: +82-54-530-0961; Fax: +82-54-530-0969
Received June 4, 2018; Revised September 19, 2018; Accepted October 8, 2018.
Abstract

In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria AMMDT, B. diffusa AM747629T, B. tettitorii LK023503T 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, 35°C and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at 20°C and 25°C, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.

Keywords : Burkholderia sp., Staphylococcus aureus, antimicrobial activity, methicillin-resistant
Body
적 요
감사의 말
References
  1. Abdel-Mawgoud AM, Abouwafa MM, and Hassouna NA. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem Biotechnol 2008;150:305-325.
    CrossRef
  2. Cartwright DK, Chilton WS, and Benson DM. Pyrrolnitrin and phenazine production by Pseudomonas cepacia strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol 1995;43:211-216.
    CrossRef
  3. Farh Mel A, Kim YJ, Van An H, Sukweenadhi J, Singh P, Huq MA, and Yang DC. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans isolated from ginseng soil. Arch. Microbiol 2015;197:439-447.
    CrossRef
  4. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783-791.
    CrossRef
  5. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool 1971;20:406-416.
    CrossRef
  6. Guerra-Santos LH, Kappeli O, and Fiechter A. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol 1986;24:443-448.
    CrossRef
  7. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 1999;41:95-98.
  8. Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, and Suzui T. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem 1989;21:723-728.
    CrossRef
  9. Jiao Y, Yoshihara T, Ishikuri S, Uchino H, and Ichihara A. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 1996;37:1039-1042.
    CrossRef
  10. Kang Y, Carlson R, Tharpe W, and Schell MA. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol 1998;64:3939-3947.
  11. Kirinuki T, Iwanuma K, Suzuki N, Fukami H, and Ueno T. Altericidins, a complex polypeptide antibiotic, produced by Pseudomonas sp. and their effect for the control of black spot of pear caused by Alternaria kikuchiana Tanaka. Sci. Rep. Fac. Agric.-Kobe Univ. (Japan) 1977;12:223-230.
  12. Kumar S, Stecher G, and Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 2016;33:1870-1874.
    CrossRef
  13. Mahenthiralingam E, Song L, Sass A, White J, Wilmot C, Marchbank A, Boaisha O, Paine J, Knight D, and Challis GL. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem. Biol 2011;18:665-677.
    CrossRef
  14. Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Sykes RB, Tanaka SK, and Trejo W. Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J. Antibiot 1987;40:1515-1519.
    CrossRef
  15. Moon SS, Kang PM, Park KS, and Kim CH. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 1996;42:365-368.
    CrossRef
  16. Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, and Sykes RB. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot (Tokyo) 1984;37:431-440.
    CrossRef
  17. Parra-Cota Fl, Pena-Cabriales JJ, de Los Santos-Villalobos S, Martinez-Gallardo NA, and Delano-Frier JP. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One 2014;9:e88094.
    CrossRef
  18. Quan CS, Zheng W, Liu Q, Ohta Y, and Fan SD. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol 2006;72:1276-1284.
    Pubmed CrossRef
  19. Saga T, and Yamaguchi K. History of antimicrobial agents and resistant bacteria. JMAJ 2009;52:103-108.
  20. Saitou N, and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 1987;4:406-425.
    Pubmed
  21. Suárez-Moreno ZR, Coutinho BG, Mendonca-Previato L, Previato L, James EK, and Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb. Ecol 2012;63:249-266.
    Pubmed CrossRef
  22. Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO, Mesbah M, Youssef D, Khalifa S, and Schmidt EW. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria2.2N. Org. Lett 2010;12:664-666.
    Pubmed CrossRef
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-4882.
    Pubmed CrossRef
  24. Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, and Deziel E. Burkholderia pseudomallei B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J. Bacteriol 2008;190:5339-5352.
    CrossRef
  25. Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, Brandt E, Eberl L, Falsen E, and Berg G. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Syst. Evol. Microbiol 2007;57:2228-2235.
    Pubmed CrossRef
  26. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, and Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia(Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol 1992;36:1251-1275.
    Pubmed CrossRef
  27. Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, and Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol 2017;67:1613-1617.
    Pubmed CrossRef


December 2018, 54 (4)